The Non-Technical
Builder's Playbook

How to Use Claude Code, VS Code, and Google Al Studio to Build Your Own
Al Tools

For anyone who wants to stop waiting and start building the tools they actually need.

Leverage Strategies | 2026 | By Dan Albasry

OOOOOOOOO

The New Builder
Moment

The difference between using Al and building with Al.

You probably already use Al. You paste a document into ChatGPT and ask for a summary.
You drop a messy email into Claude and ask it to clean up the language. That is useful. But
it is not building. It is having a conversation, and the conversation disappears the moment
you close the tab.

Building is different. Building means you create a tool that works the same way every time,
that other people can use without knowing anything about Al, and that runs whether you are
paying attention or not.

Using Al means re-explaining what you want every time. The output is inconsistent. Nobody
else can use it. The moment you close the chat, the work is gone.

Building with Al means tools that persist, tools that other people can use, tools that produce
consistent results without you writing a new prompt every time, tools that run in the
background while you do your actual job.

$0 DaysS English

Cost to start building Learning curve, not The only language
with these tools semesters you need

Understanding Claude

What it is, why it matters, and how to get started.

Claude is an Al made by Anthropic. You may already know ChatGPT from OpenAl. Claude
and ChatGPT are similar in that you can talk to both in plain English and they will help you

think, write, and solve problems. But they are different tools with different strengths, and for
building, Claude is the better choice.

You can use Claude in two ways. The first is through the website, claude.ai, where you type
messages in a chat window. The second, and the one this playbook focuses on, is through
Claude Code, which puts Claude directly inside a code editor so it can create files, write
scripts, and build tools for you.

claude.ai, console.anthropic.com

Step 1: Create an Anthropic Account. Go to claude.ai, click Sign up. You can sign up with
your email or a Google account. Once signed in, you will see a chat interface. Take a
moment to say hello and confirm it works.

Step 2: Understand the Plans. Claude has a free tier with limited messages per day. For
serious building, Claude Pro costs $20 per month. Start free while following this playbook.
Upgrade when you hit limits.

Step 3: Get Your API Key. Go to console.anthropic.com. Sign in. Click API Keys, then
Create Key. Name it My Builder Key. Copy it and save it somewhere safe. You will paste
this into VS Code in a few minutes.

APl usage is pay-as-you-go, separate from the $20/month Pro subscription. For building
small tools, expect to spend $5 to $15 per month on API usage. You can set spending limits
in the console so you never get surprised.

ChatGPT is a great conversational assistant. Claude Code is a builder. When you want to
have a conversation, either one works. When you want to create a tool that lives on your
computer, that other people can use, and that you can improve over time, Claude Code is
the right choice.

SSSSSSSSS

Visual Studio Code:
Setup Guide

Your workshop. Claude is the engineer inside it.

VS Code is a free application made by Microsoft. It is a text editor designed for working with
files and code. But you are not going to write code. You are going to use it as a workspace
where Claude writes code for you while you direct the work in plain English.

Go to code.visualstudio.com. The website automatically detects your operating system.
Download the installer. Run it. When the installation is complete, open VS Code.

code.visualstudio.com, Microsoft 2026

The Sidebar (left edge): A vertical strip of icons. The Explorer icon shows your files and
folders. The Extensions icon lets you install add-ons like Claude Code.

The Editor Area (center): The large blank area where files open. You can have multiple files
open in tabs, just like browser tabs.

The Terminal (bottom): Press Ctrl+" on Windows or Cmd+" on Mac. When Claude tells you
to run a command, you paste it here and press Enter.

VS Code Documentation, Microsoft 2026

Before installing Claude Code, create your workspace folder. In your file manager, navigate
to your Desktop or Documents folder. Create a new folder called Al-Tools. In VS Code, click
File, then Open Folder. Select the Al-Tools folder. This is your workspace. Everything you
build will live inside this folder.

VS Code Documentation, Microsoft 2026

Step 1: In VS Code, click the Extensions icon in the sidebar. Search for Claude Code.
You will see a result from Anthropic. Click Install.

Step 2: A new Claude icon will appear in your sidebar. Click it. It will ask you to sign in
or enter an API key. Paste the API key you created earlier.

Step 3: Test it. In the chat panel, type Hello, | just set up Claude Code. Can you see my Al-
Tools folder? If Claude responds and confirms it can see your workspace, you are ready to
build.

Google Al Studio

Your app builder. Zero installation required.

Google Al Studio is a free, browser-based tool from Google that lets you build working
applications by describing them in plain English. It is powered by Gemini. You do not need
to install anything. You do not need a credit card. You type what you want, and Gemini
builds a working app in under a minute.

Open your web browser and go to aistudio.google.com. Sign in with any Google account.
Click Build, then New App. You will see a large text box where you describe what you want.
That is it.

aistudio.google.com, Google 2026

When you need something quick and visual, start in Al Studio. When you need something
that processes data, runs automatically, or does something Al Studio cannot handle, use
Claude Code. As you get comfortable, you will move between them naturally.

Some tools use both: Claude Code for the logic, Al Studio for the interface. Think of Claude
Code as the backend engine and Al Studio as the frontend that people interact with.

Google Al Studio Documentation, 2026

SSSSSSSSS

How to Think
Like a Builder

The section that determines whether you actually use these tools.

The only skill you need to learn:
how to describe your work as a
workflow.

Not in technical terms. In plain English. The way you would explain your job to a smart new hire

on their first day.

The Core Shift: From Doing to Describing. When you do your job, you operate on
autopilot. You open a spreadsheet, scan the columns, mentally filter out the rows that do not
matter, calculate a number, paste it somewhere. An Al cannot read your autopilot. It needs
you to describe what you do as a sequence of explicit steps.

The Everything List. Before you build anything, you need to know what to build. Get a
piece of paper. Write down every single thing you do in a day. Do not filter. Circle everything
that is repetitive, follows roughly the same pattern, and that you wish you could hand off to
someone.

The Job Story Formula. Every tool starts with a job story: When does this happen? What
do | do? What are the specific steps? How long does it take? What is the annoying part?

For example: Every Monday, | download a CSV from our system. | open it in Excel, delete
the first three rows of headers, filter for active accounts only, calculate the total by region,

and paste the results into a slide deck. It takes ninety minutes. | do the exact same steps

every single week.

The Four Questions That Turn Any Task Into a Tool. Before you ask Claude to build
anything, answer these:

1. What goes in? A file? A block of text? A URL? Be specific: a CSV with columns for name,
email, company, deal stage, and amount.

2. What comes out? A formatted report? A summary? An email draft? Describe the output
the way you would describe it to someone who has never seen it.

3. What are the rules? What logic determines the output? If the deal is over $50K, flag it as
enterprise. If the status is inactive for 90+ days, highlight it in red.

4. Who else will use this? Just you? Your team? Your clients?

Talk too much, not too little. The biggest mistake non-technical builders make is being too
brief. Do not write a prompt. Write a monologue. Talk the way you would talk to a colleague
at a whiteboard. Ramble. Be redundant. Use the specific words you use at work, not
generic terms.

Use dictation, not typing. Every phone and most computers have speech-to-text. Talk
about what you want for two or three minutes straight. You will naturally produce a detailed
description far better than anything you would have typed.

Screenshot and paste. Found a tool or app that looks the way you want? Take a
screenshot and paste it directly into Claude. Say: Make it look like this.

Feed it your brand. Paste your brand colors, fonts, and logo at the start. Every output will
match your brand.

Show it examples of your actual work. Paste a report you wrote, a note you took. Say:
Match this format and tone. Claude will study the example and replicate the pattern.

Ask for three versions. When you are not sure what you want, say: Show me three
different approaches. Pick the closest one and refine.

Never start over, always iterate. When the output is wrong, say: Keep everything but
change the header layout. Claude remembers the entire conversation. Starting over throws
that context away.

Paste error messages without understanding them. When something breaks, copy the
entire error message, paste it to Claude, and say: Fix this and tell me what changed in plain
English.

The Emotional Reality of Building. Things will break. Frequently. Breaking things is the
process. Professional developers break things constantly. Your only job when something
breaks is to tell Claude what happened and ask it to fix it.

Who This Is For

Six people who could use this playbook. If you recognize yourself, you are in the right place.

Healthcare Professional. You spend as much time on documentation as on patients. Tools
you could build in a weekend: a clinical note generator from voice or shorthand notes, a
patient intake form that pre-populates from referral information, an exercise prescription
builder, a follow-up email drafter.

Legal or Compliance Professional. You review the same document types hundreds of
times. Tools you could build: a contract clause reviewer that flags non-standard terms, a
compliance checklist generator, a case brief summarizer, a document comparison tool.

Business or Sales Professional. You live in spreadsheets, your CRM, and your inbox.
Tools you could build: a weekly report generator that cleans and formats data exports
automatically, a pre-meeting research brief builder, a proposal draft generator, a lead
scoring calculator.

HR or People Operations Professional. Every new hire means the same twenty tasks in
the same order, done manually. Tools you could build: an onboarding checklist generator
customized per role, an interview question bank, a policy document summarizer, a training
completion tracker.

Creative Professional. Your creative work is what you love. The business side drains you.
Tools you could build: a client brief intake app, an invoice generator from project details, a
content calendar builder, a portfolio description writer.

Manager or Admin Professional. You make everything run. Tools you could build: a
meeting prep briefing, a weekly status report assembler, an email digest that highlights what
needs attention, a decision log that turns meeting notes into tracked action items.

48hrs 5-10 Zero

To build your Iterations to get Lines of code
first useful tool it right written by you

SSSSSSSSS

Claude Code:
Your Personal Engineer

It builds things for you based on plain English descriptions.

Every project you build should start with a file called CLAUDE.md. This is a plain text file
that tells Claude who you are, what your job is, and what you are trying to build. Claude
reads this file every time you start a conversation in that folder.

Write it in your own words for your own role. Include your job title, what you want Claude to
help you build, your frustrations with current tools, and how you want Claude to
communicate with you. This is the single most important thing you can do to get good
results.

Anthropic Claude Code Documentation, 2026

Plan Mode. Before any code is written, ask Claude to plan. Say: | want to build a tool
that does X. Before you write any code, plan the approach. What files will you create? What
will each one do? Walk me through the plan step by step.

Build Mode. Once the plan is solid, say: The plan looks good. Build it. Claude will
create the files, explain each one, and tell you how to run them. If something does not work,
paste the error message back and say: Fix this and tell me what changed in plain English.

Pattern 1: Explore and Understand. Use when you want to understand what a script
does. Tell Claude: Explain this project to me as if | am completely new.

Pattern 2: New Tool from a Job Story. Start with the story: Every week | do X, then Y, then
Z, and it takes me two hours. Claude will propose, plan, build, and explain.

Pattern 3: Fix and Improve. Paste the error or describe what you want to change. Claude
fixes it and explains what changed.

SSSSSSSSS

Google Al Studio:
Build Apps Without Code

Go to aistudio.google.com. Click Build, then New App. Type a description of the app you
want, as if explaining it to a colleague. Hit Build. Wait thirty seconds to a minute. Gemini
creates a working application.

Test it by pasting real content. If something is not right, use the chat sidebar to refine: Make
the output shorter. Add a field for client name. Change the format to bullet points. Each
change updates the app in real time.

Google Al Studio Documentation, 2026

Document processors: paste any document and get a structured summary, risk flags,
or action items extracted. Draft generators: input context and key details, get a polished
first draft. Data analyzers: upload a spreadsheet, ask questions in plain English, get charts
and insights.

Intake and forms: a structured app where someone inputs information and gets a
formatted output. Content creators: describe the topic and format, get a first draft. These
are the kinds of apps people across every profession are building right now.

Workspace Studio: Automations That Run Themselves. Google Workspace Studio
creates automations that run automatically inside Gmail, Calendar, Drive, and Chat.
Templates include summarizing unread emails, notifying about messages from key people,
labeling emails with action items, and generating daily digests.

Think of Workspace Studio as your always-on assistant. Al Studio builds tools you use on
demand. Workspace Studio builds tools that run in the background and bring information to
you.

Six Builder Stories

The pain, the tool, and how you would build it.

Story 1: The Physiotherapist's Clinical Notes. Before: After every patient, you spend
fifteen to twenty minutes writing clinical notes. By your sixth patient, the notes from patient
one are fuzzy. You stay late to finish documentation.

After: You dictate shorthand notes during or right after the session. A tool converts
your shorthand into structured SOAP-format documentation. The format is consistent every
time.

How to build it: Create a CLAUDE. md describing your role. Ask Claude to plan a script
that takes shorthand input and produces SOAP-format notes. Then create an Al Studio app
for mobile use between patients.

Story 2: The Lawyer's Contract Reviewer. Before: You review NDAs and service
agreements manually, looking for non-standard clauses. Each review takes thirty to sixty
minutes.

After: You paste the contract into an Al Studio app. It highlights every non-standard
clause, flags risk areas, and compares key terms against your standard positions. What
took an hour takes five minutes for the initial scan.

How to build it: Build the app in Al Studio. Describe the clause types you look for and
what standard looks like. Upload examples of good and bad contracts. Refine until the
output matches your judgment.

Story 3: The HR Manager's Onboarding Engine. Before: Every new hire means twenty
tasks tracked in a spreadsheet. Things get missed. The experience is inconsistent.

After: You enter the new hire's name, role, department, and start date into an app. It
generates a complete onboarding checklist, drafts the welcome email, prepares the
equipment request, and produces a week-one schedule.

How to build it: Build the front end in Al Studio. Use Claude Code for the logic that
customizes checklists by department and role. Set up Workspace Studio automations for
timed emails.

Story 4: The Artist's Client Brief System. Before: Clients describe what they want in
rambling emails and voice messages. You spend thirty minutes per commission just
organizing what they need.

After: You send clients a link to an Al Studio app. They fill in structured fields. The app
produces a formatted brief both of you can review. No more chasing information across five
channels.

How to build it: Build entirely in Al Studio. Describe the fields you need, the format of the
output brief, and any conditional logic. Test with a real client.

Story 5: The Admin's Meeting Intelligence. Before: You attend five to eight meetings a
day. After each one, you spend time writing up notes and identifying action items. By late
afternoon, you are behind.

After: You paste the transcript or your raw notes into an Al Studio app. It produces a
clean summary, bullet-point action items with owners, decisions made, and open questions.
What took twenty minutes takes two.

Story 6: The Sales Leader's Weekly Report. Before: Every Monday you export a
spreadsheet, spend an hour cleaning data, calculating metrics, and formatting for the
leadership presentation.

After: You drop the export into a folder. A script Claude built cleans the data, calculates
every metric, and produces a formatted summary. An Al Studio app lets any team member
upload the file and get the same output. Monday prep went from two hours to five minutes.

OOOOOOOOO

The Builder
Operating Model

How to keep your tools organized, safe, and useful over time.

Inside your Al-Tools folder, create one sub-folder for each tool you build. Every folder should
have three things: CLAUDE.md (the instructions file), examples/ (sample inputs and
expected outputs), and scripts/ (the code Claude generates).

In Google Al Studio, name your apps clearly: Clinical Note Generator, Contract Clause
Reviewer, Monday Report Builder. Not App 4 or Test thing. You will forget what Test thing
does in a week.

Leverage Strategies builder frameworks, 2026

Start read-only. Your first tools should read data and produce summaries, suggestions, or
reports. They should not send emails, modify databases, or change records automatically.
Read-only tools cannot break anything.

Do not connect to production systems without IT. Processing an exported file is safe.
Writing directly to a live system is not something you should do alone.

Never paste passwords, keys, or secrets into Claude or Gemini. If a tool needs
authentication, ask IT to help you set up environment variables.

Test with sample data first. Before running any tool on real data, especially anything
involving client information, patient data, or financial records, test it with sample data.
Claude can generate test data for you.

Keep scope tight. Build small tools that do one thing well. A tool that formats clinical notes is
better than a tool that formats notes, books appointments, sends referrals, and orders
supplies. Start small. Add features later.

Know your compliance obligations. If you work in healthcare, law, finance, or any
regulated field, check with your compliance team before deploying tools that process
sensitive data.

lllllllll

The 30-Day
Builder Sprint

By the end of thirty days, you will have built and shared real tools.

Week 1: Install and Observe. Days 1-2: Set up everything. Install VS Code. Install Claude
Code. Create your Al-Tools folder. Create your first CLAUDE.md file. Go to
aistudio.google.com and confirm access.

Days 3-5: Observe, do not build. Spend three days just talking to Claude about your work.
Describe your daily workflows and ask Claude to identify which ones are automatable. By

Friday, you should have a list of at least five workflows ranked by how much time they
waste.

Week 2: Your First Personal Tool. Days 6-8: Build with Claude Code. Pick the easiest
workflow from your list. Something with a clear input and clear output. Follow the Plan-then-
Build pattern. By day 8, you should have a working tool.

Days 9-10: Build the same thing in Al Studio. Take the same idea and build it as a web
app. Compare the two approaches. You now understand when to use each tool.

Week 3: Share and Automate. Days 11-13: Polish one Al Studio app so a colleague can
use it without explanation. Test it with someone who was not involved in building it. Watch
where they get confused. Fix those parts. Share the link.

Days 14-15: Try one Workspace Studio automation. Start with a template: daily emalil
summary, meeting recap, or action item extraction. Let it run for a few days.

Week 4: Multiply. Days 16-20: Build your second tool. Pick a harder workflow. By now you
will be faster. The CLAUDE.md file and Plan Mode prompts will feel natural.

Days 21-25: Teach one person. Sit down with a colleague. Ask them what slows them
down. Build a tiny tool together using Al Studio. The best way to learn this is to teach it.

Days 26-30: Document and reflect. Write down what you built, how you built it, and what
you learned. Two to three pages with screenshots. This is your portfolio.

The people who build useful tools are not
smarter. They are simply willing to say
"change this" fifteen times until it is right.

Building is not about technical skill. It is about persistence, clarity, and the willingness to iterate.

About Leverage Strategies

Leverage Strategies helps individuals and organizations build Al-powered tools and systems. From
individual professionals building their first personal automation to teams deploying Al infrastructure
across departments, we work at every scale and across every industry.

If you want help building your own Al tools, setting up a builder stack for your team, or designing an
internal capability program that turns your non-technical people into builders, reach out.

Leverage Strategies | February 2026

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56

